Bern University
F of Applied Sciences

H

Informatikseminar
Bitmessage — Communication Without Metadata

Author Christian Basler
Tutor Kai Brinnler
Date May 15, 2015

Bern University
of Applied Sciences
Informatikseminar .

Contents
1. Synopsis 3
2. Basics 3
3. Protocol 3
3.1. Nomenclature 3
3.2. Process Flow 4
330 Messageso 4
3.3.1. wversion /verack L 4
3.3.2. addr ... 4
333, 0NV L 4
334, getdata 5
3.35. object 5
33.6. ping /pong 5
3.4, Addresses e 5
3.5. Encryption 5
3.6. Signature. 6
4. lIssues 7
4.1. Scalability 7
4.1.1. Streams L 7
4.1.2. Prefix Filtering. 7
42. Forward Secrecy 7
5. Discussion 8
Appendix 8
A, TODO . . . e 8

May 15, 2015 2/8

Bern University
of Applied Science
Informatikseminar .

1. Synopsis

TODO

2. Basics

While encryption technology like PGP or S/MIME provides a secure way to protect content from
prying eyes, ever since Edward Snowdens whistleblowing we learned that metadata — most notably
information about who communicates with whom — is equally interesting and much easier to
analyze.

With e-mail, we can only prevent this by encrypting the connection to the server as well as between
servers. Therefore we can only hope that both our and the recipient’s e-mail provider are both
trustworthy as well as competent.

With Bitmessage we send a message to a sufficiently large number of participants, with the intended
recipient among them. Content is encrypted such as only the person in possesion of the private
key can decrypt it. All participants try to do this in order to find their messages.

3. Protocol

3.1. Nomenclature

There are a few terms that are easily mixed up. Here's a list of the most confusing ones:

message is sent from one node to another, i.e. to announce new objects or to
initialize the network connection.

msg is the object payload containing the actual message written by a user.
The term 'message’ is never used to describe information exchange
between users in this document. 'Content’ is mostly used instead.

payload There are two kinds of payload: message payload for message types, e.g.
containing inventory vectors, and object payload, which is distributed
throughout the network.

object is a kind of message whose payload is distributed among all nodes.
Somtimes just the payload is meant.

May 15, 2015 3/8

ern University
of Applied Sciences
Informatikseminar .

3.2. Process Flow

The newly started node A connects to a random node B from its node registry and sends a version
message, announcing the latest supported protocol version. If B accepts the version!, it responds
with a verack message, followed by a version message announcing its own latest supported protocol
version. Node A then decides whether it supports B’s version and sends its verack mesage.

If both nodes accept the connection, they both send an addr message containing up to 1000 of its
known nodes, followed by one or more inv messages announcing all valid objects they are aware of.
They then send getobject request for all objects still missing from their inventory.

Getobject requests are answered by object messages containing the requested objects.

If a user writes a new mail on node A, it is offered via inv to up to eight connected nodes. They
will get the object and distribute it to up to eight of their connections, and so on.

3.3. Messages

The messages, objects and binary format are very well discribed in the Bitmessage wiki [1], the
message description is therefore narrowed down to a description of what they do and when they're
used.

3.3.1. version / verack

A version message contains the latest protocol version supported by a node, as well as the streams
it is interested in and which features it supports. If the other node accepts, it acknowledges with
a verack message. The connection is initialized when both nodes sent a verack message.

3.3.2. addr

Contains up to 1000 known nodes with their IP addresses, ports, streams and supported features.

3.3.3. inv

One inv message contains the hashes of up to 50000 valid objects. If your inventory is larger,
several messages can be sent.

LA version is accepted by default if it is higher or equal to a nodes latest supported version. Nodes supporting
experimental protocol versions might accept older versions.

May 15, 2015 4/8

Bern University
of Applied Science
Informatikseminar .

3.3.4. getdata

Can request up to 50000 objects by sending their hashes.

3.3.5. object

Contains one requested object, which might be one of:

getpubkey A request for a public key, which is needed to encrypt a message to a
specific user.

pubkey A public key. See 3.4 Addresses

msg Content intended to be received by one user.

broadcast Content sent in a way that the Addresses public key can be used to

decrypt it, allowing any subscriber who knows the address to receive
the such a message

3.3.6. ping / pong

3.4. Addresses

BM-2cXxfcSetKnbHJX2Y85rSkaVpsdNUZ5q9h: Addresses start with "BM-" and are, like Bitcoin
addresses, Base58 encoded?.

version Address version.
stream Stream number.
ripe Hash of both public signing and encryption key. Please note that the

keys are sent without the leading 0x04 in pubkey objects, but for
creating the ripe it must be prepended. This is also necessary for most
other applications, so it's a good idea to do it by default.

ripemd160(sha512(pubSigKey + pubEncKey))

checksum First four bytes of a double SHA-512 hash of the above.

shab512(sha512(version + stream + ripe))

3.5. Encryption

Bitcoin uses Elliptic Curve Cryptography for both signing and encryption. While the mathematics
behind elliptic curves is even harder to understand than the usual prime-and-modulo-until-your-

2Which uses characters 1-9, A-Z and a-z without the easily confused characters I, |, 0 and O.

May 15, 2015 5/8

o e e cas
Informatikseminar .

brain-explodes approach, it's based on the same principle that factorizing large numbers is very
hard to do. Instead of two very large primes, we multiply a point on the elliptic curve by a very
large number3.

The user, let’s call her Alice, needs a key pair, consisting of a private key
k
which represents a huge random number, and a public key
K =Gk

which represents a point on the agreed on curve*. Please note that this is not a simple multiplication,
but the multiplication of a point along an elliptic curve. G is the starting point for all operations
on a specific curve.

Another user, Bob, knows the public key. To encrypt a message, Bob creates a temporary key pair
r

and
He then calculates

uses the resulting Point to encrypt the message® and sends K along with the message.
When Alice receives the message, she uses the fact that

Kr = Gkr = Grk = Rk
so she just uses Rk to decrypt the message.

The exact method used in Bitmessage is called Elliptic Curve Integrated Encryption Scheme or
ECIESS.

3.6. Signature

ECDSA

3Please don't ask me how to do it. If your're crazy enough, start at http://en.wikipedia.org/wiki/Elliptic_curve_
cryptography. If you're not that crazy, use a library like Bouncy Casle.

“Bitmessage uses a curve called secp256k1.

°A double SHA-512 hash over the x-coordinate is used to create the actual key.

®See http://en.wikipedia.org/wiki/Integrated_Encryption_Scheme

May 15, 2015 6/8

http://en.wikipedia.org/wiki/Elliptic_curve_cryptography
http://en.wikipedia.org/wiki/Elliptic_curve_cryptography
http://en.wikipedia.org/wiki/Integrated_Encryption_Scheme

ern University
of Applied Sciences
Informatikseminar .

4. lIssues

4.1. Scalability

Bitmessage doen't really scale. If there are very few users, anonymity isn't given anymore, and with
many users traffic and storage use grows quadratically.

4.1.1. Streams

The intended solution for this problem is splitting traffic’ into streams. When all active streams
are full, a new one is created which should be used for new addresses. All users can send messages
to any stream, but only listen to the streams belonging to their addresses. The unsolved problem is
to determine when a stream is full. The other issue is the fact that, as the overall network grows,
traffic on full streams still grows, as there are more users who might wanto to write someone on
the full stream.

4.1.2. Prefix Filtering

TODO

4.2. Forward Secrecy

Obviously it's trivial for an attacker to collect all (encrypted) objects distributed through the Bitmes-
sage network®. If this attacker can somehow get the private key of a user, they can decrypt all

stored messages intended for that user, as well as impersonate said user®.

Plausible deniability can, in some scenarios, help against this. This action, called "nuking an
address”, is done by anonymously publishing the private keys somewhere publicly accessible!?.

Perfect forward secrecy seems impractical to implement, as it requires to exchange messages prior
to sending content. That would in turn need proof of work to protect the network, resulting in
twice the work for the sender and three times longer to send — that is if both clients are online.

"Addresses, actualy.

8As long as disk space is not an issue.

9The latter might be more difficult if they got the key through a brute force attack.
9S00 https://bitmessage.ch/nuked/ for an example.

May 15, 2015 7/8

https://bitmessage.ch/nuked/

F
Informatikseminar

5. Discussion

TODO

References

[1] Atheros and Jonathan Coe. Bitmessage wiki: Protocol specification, 2015.

Appendix

A. TODO

May 15, 2015 8/8

	Synopsis
	Basics
	Protocol
	Nomenclature
	Process Flow
	Messages
	version / verack
	addr
	inv
	getdata
	object
	ping / pong

	Addresses
	Encryption
	Signature

	Issues
	Scalability
	Streams
	Prefix Filtering

	Forward Secrecy

	Discussion
	Appendix
	TODO

