
Bern University
of Applied Sciences

Informatikseminar
Bitmessage – Communication Without Metadata

Author Christian Basler
Tutor Kai Brünnler
Date May 25, 2015

Informatikseminar

Contents

1. Introduction 4
1.1. What is Metadata? . 4
1.2. How Can We Hide Metadata? . 4

2. Protocol 5
2.1. Nomenclature . 5

2.1.1. message, msg . 5
2.1.2. payload . 5
2.1.3. object . 5

2.2. Process Flow . 6
2.3. Messages . 6

2.3.1. version / verack . 6
2.3.2. addr . 6
2.3.3. inv . 6
2.3.4. getdata . 7
2.3.5. object . 7
2.3.6. ping / pong / getbiginv . 7

2.4. Addresses . 7
2.5. Encryption . 8

2.5.1. Signature . 9

3. Issues 10
3.1. Scalability . 10

3.1.1. Proof of Work . 10
3.1.2. Message Size Limitation . 10
3.1.3. Streams . 11
3.1.4. Prefix Filtering . 11

3.2. Forward Secrecy . 12

4. Discussion 13

Appendix 13
A. TODO . 13

List of Figures

1. prefix filter: binary tree . 11

May 25, 2015 2/13

Informatikseminar

Abstract

Even if we use encryption, we reveal a lot about ourselves in the metadata we produce. Bitmessage
prevents this by distributing a message in a way that it’s not possible to find out which was the
intended recipient.

May 25, 2015 3/13

Informatikseminar

1. Introduction

1.1. What is Metadata?

While encryption technology like PGP or S/MIME provides a secure way to protect content from
prying eyes, ever since Edward Snowdens whistleblowing we learned that metadata — most notably
information about who communicates with whom — is equally interesting and much easier to
analyze.

There are a few examples where meta data might be enough to get you in trouble. If you write
to someoune in the IS, you might not be able to fly the next time you want to visit the U.S. The
no-fly list doesn’t care if you’re a journalist, or had no clue that this person was a terrorist.

If Samsung knows Apple talks excessively with the sole producer of this nifty little sensor, they
don’t need the details — the S7 will sport one of those, too. (Failing to see that Apple used it to
build a car.)

1.2. How Can We Hide Metadata?

With e-mail, we can only prevent this by encrypting the connection to the server as well as between
servers. Therefore we can only hope that both our and the recipient’s e-mail provider are both
trustworthy as well as competent.1

With Bitmessage we send a message to a sufficiently large number of participants, with the intended
recipient among them. Content is encrypted such as only the person in possesion of the private
key can decrypt it. All participants try to do this in order to find their messages.

1Of course they should be free as well.

May 25, 2015 4/13

Informatikseminar

2. Protocol

We use the following convention to distinguish different parts of the protocol:

version for messages between nodes
pubkey for objects that are spread throughout the network
A for individual nodes

2.1. Nomenclature

There are a few terms that are easily mixed up. Here’s a list of the most confusing ones:

2.1.1. message, msg

A message is sent from one node to another, i.e. to announce new objects or to initialize the
network connection.

An msg on the other hand is the object payload containing content written by a user.

In the protocol section, the term ’message’ is never used to describe information exchange between
users.

2.1.2. payload

There are three kinds of payload:

1. Message payload for message types, e.g. containing inventory vectors.

2. Object payload, which is distributed throughout the network.2

3. Encrypted payload, which is the ciphertext with some metadata needed for decryption.3

2.1.3. object

An object is a kind of message whose payload is distributed among all nodes. Somtimes just the
payload is meant. To send an object, proof of work is required.

2And part of the message payload.
3Which, again, is part of the object payload.

May 25, 2015 5/13

Informatikseminar

2.2. Process Flow

The newly started node A connects to a random node B from its node registry and sends a version
message, announcing the latest supported protocol version. If B accepts the version,4 it responds
with a verack message, followed by a version message announcing its own latest supported protocol
version. Node A then decides whether it supports B’s version and sends its verack message.

If both nodes accept the connection, they both send an addr message containing up to 1000 of its
known nodes, followed by one or more inv messages announcing all valid objects they are aware of.
They then send getobject request for all objects still missing from their inventory.

Getobject requests are answered by object messages containing the requested objects.

A node actively connects to eight other nodes, allowing any number of incoming connections. If a
user creates a new object on node A, it is offered via inv to eight of the connected nodes. They
will get the object and distribute it to up to eight of their connections, and so on, until all nodes
have it in their inventory.

2.3. Messages

The messages, objects and binary format are very well discribed in the Bitmessage wiki [2], the
message description is therefore narrowed down to a description of what they do and when they’re
used.

2.3.1. version / verack

A version message contains the latest protocol version supported by a node, as well as the streams
it is interested in and which features it supports. If the other node accepts, it acknowledges with
a verack message. The connection is initialized when both nodes sent a verack message.

2.3.2. addr

Contains up to 1000 known nodes with their IP addresses, ports, streams and supported features.

2.3.3. inv

One inv message contains the hashes of up to 50000 valid objects. If your inventory is larger,
several messages can be sent.

4A version is accepted by default if it is higher or equal to a nodes latest supported version. Nodes supporting
experimental protocol versions might accept older versions.

May 25, 2015 6/13

Informatikseminar

2.3.4. getdata

Can request up to 50000 objects by sending their hashes.

2.3.5. object

Contains one requested object, which might be one of:

getpubkey A request for a public key, which is needed to encrypt a message to a
specific user.

pubkey A public key. See 2.4 Addresses

msg Content intended to be received by one user.

broadcast Content sent in a way that the Addresses public key can be used to
decrypt it, allowing any subscriber who knows the address to receive
the such a message

2.3.6. ping / pong / getbiginv

People looking at the PyBitmessage’s source code might be irritated by some other messages
that seem to be implemented, but aren’t mentioned in the official protocol specification. ping does
actually cause the node that implements this to send a pong message, but this feature isn’t actually
used anywhere. getbiginv seems to be thought for requesting the inventory, but as I understand it
can’t be used. [3]

2.4. Addresses

BM-2cXxfcSetKnbHJX2Y85rSkaVpsdNUZ5q9h: Addresses start with ”BM-” and are, like Bitcoin
addresses, Base58 encoded.5

version Address version.

stream Stream number.

ripe Hash of both public signing and encryption key. Please note that the
keys are sent without the leading 0x04 in pubkey objects, but for
creating the ripe it must be prepended. This is also necessary for
most other applications, so it’s a good idea to do it by default.

ripemd160(sha512(pubSigKey + pubEncKey))

5Which uses characters 1-9, A-Z and a-z without the easily confused characters I, l, 0 and O.

May 25, 2015 7/13

Informatikseminar

checksum First four bytes of a double SHA-512 hash of the above.

sha512(sha512(version + stream + ripe))

2.5. Encryption

Bitmessage uses Elliptic Curve Cryptography for both signing and encryption. While the mathe-
matics behind elliptic curves is even harder to understand than the older approach of multiplying
huge primes, it’s based on the same principle of doing some mathematical operation that can be
done fast one way but is very hard to reverse. Instead of two very large primes, we multiply a point
on the elliptic curve by a very large number.6

The user, let’s call her Alice, needs a key pair, consisting of a private key

k

which represents a huge random number, and a public key

K = Gk

which represents a point on the agreed on curve.7 Please note that this is not a simple multiplication,
but the multiplication of a point along an elliptic curve. G is the starting point for all operations
on a specific curve.

Another user, Bob, knows the public key. To encrypt a message, Bob creates a temporary key pair

r

and
R = Gr

He then calculates
Kr

uses the resulting Point to encrypt the message8 and sends K along with the message.

When Alice receives the message, she uses the fact that

Kr = Gkr = Grk = Rk

so she just uses Rk to decrypt the message.

The exact method used in Bitmessage is called Elliptic Curve Integrated Encryption Scheme
or ECIES, which is described in detail on Wikipedia (http://en.wikipedia.org/wiki/Integrated
Encryption Scheme).

6Please don’t ask me how to do it. If you really want to know, start at http://en.wikipedia.org/wiki/Elliptic
curve point multiplication and http://en.wikipedia.org/wiki/Elliptic curve cryptography. If you want to make
something that works, use a library like Bouncy Casle that does the heavy lifting for you.

7Bitmessage uses a curve called secp256k1.
8A double SHA-512 hash over the x-coordinate is used to create the actual key.

May 25, 2015 8/13

http://en.wikipedia.org/wiki/Integrated_Encryption_Scheme
http://en.wikipedia.org/wiki/Integrated_Encryption_Scheme
http://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
http://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
http://en.wikipedia.org/wiki/Elliptic_curve_cryptography

Informatikseminar

2.5.1. Signature

To sign objects, Bitmessage uses Elliptic Curve Digital Signature Algorithm or ECDSA. This is
slightly more complicated, if you want the details, Wikipedia is once again a fine starting point:
http://en.wikipedia.org/wiki/Elliptic Curve Digital Signature Algorithm.

A detail that’s interesting for people who want to implement a Bitmessage client, particularly if they
do it using some object oriented approach: the signature covers everything from the object header
sans nonce, and everything from the object payload except for the signature itself. Of course, not
all objects are signed.9

9My approach was: think first, do it wrong, then refactor a lot.

May 25, 2015 9/13

http://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

Informatikseminar

3. Issues

3.1. Scalability

Bitmessage doen’t scale.10 If there are very few users, anonymity isn’t given anymore. With just
a handful users, it’s easy (for, let’s say the NSA) to analyse traffic between nodes to find out who
they might be writing to. Or let’s just put them all under surveilance.

With many users, traffic and storage use grows quadratically. This, because with more users there
are more people who write messages as well as more users to write to for existing users.

3.1.1. Proof of Work

Proof of work has two uses. It helps to protect the network by preventing single nodes from flooding
it with objects, and to protect users from spam. There’s minimal proof of work required for the
network to distribute objects, but users can define higher requirements for their addresses if they
get spammed with cheap Viagra™ offers. The proof of work required for an address is defined in
the pubkey, and senders that are in a user’s contacts should not be required to do the higher proof
of work.

The difficulty is calculated from both message size as well as time to live, meaning that a message
that is larger or stored longer in the network will be more expensive to send.

d = 264

n(l + tl
216)

d target difficulty
n required trials per byte
l payload length + extra bytes (in order to not make it too easy to send a lot of tiny messages)
t time to live

To do the proof of work, a nonce must be found such that the first eight bytes of the hash of the
object (including the nonce) represent a lower number than the target difficulty.

3.1.2. Message Size Limitation

To prevent malicious users from clogging individual nodes, messages must not be larger than 256
KiB. Because of the proof of work, large objects arent’ practical for normal use, but might be used
to occupy nodes by sending them garbage.

10Yet.

May 25, 2015 10/13

Informatikseminar

3.1.3. Streams

The intended solution for this problem is splitting traffic – addresses, more precisely – into streams.
A node listens only on the streams that concern its addresses. If it wants to send an object to
another stream, it just connects to a node in this stream to send the object, then disconnects.
When all active streams are full, a new one is created which should be used for new addresses.

The unsolved problem is to determine when a stream is full. Another issue is the fact that, as the
overall network grows, traffic on full streams still grows, as there are more users who might wanto
to write someone on the full stream.

3.1.4. Prefix Filtering

Jonathan Coe proposed this interesting way of handling traffic. This would need an update to the
protocol, but allows for much finer grained control of how much traffic a node wants to handle.[1]

Instead of streams, we imagine an address as a leave of a binary tree of height 65. The position is
defined by the first 64 bits of the address’ ripe. A prefix value n defines the node at wich we start
to listen. A client sending a message sets a 64 bit nonce where the first n bits are copied from the
recipient’s ripe, and the rest is set randomly.

Figure 1: Note that the prefix value goes up to 64, i.e. each yellow triangle is itself a subtree of
height 61.

Now let’s assume Bob’s address’ ripe starts with 00101001... and his prefix value is 3. Alice
sends a message tagged with 00110100.... The first three bits must be the same, but the rest
is random. Bob’s client now gets only objects that match his prefix, meaning he must only handle
1⁄8 of the overall traffic.11

As Bitmessage might get more popular, it would produce more and more traffic. Bob therefore

11At the moment, the overall traffic is around 1 GiB per month.

May 25, 2015 11/13

Informatikseminar

might want to raise his prefix value to 4, further reducing the traffic he handles to 1⁄16 of the overall
traffic. To do this, he simply publishes his pubkey with the updated prefix value. This means of
course that either must there always be a pubkey published, or Alice needs to be online at least
once while the pubkey is published. Otherwise there’s a 50% chance (in our scenario) that the
message won’t reach Bob.

While this would allow for a mobile client to only process messages meant for its addresses,12 this
would mean to give up anonymity almost completely.

TODO

.

.

.

.

.

.

3.2. Forward Secrecy

Obviously it’s trivial for an attacker to collect all (encrypted) objects distributed through the Bitmes-
sage network – as long as disk space is not an issue. If this attacker can somehow get the private
key of a user, they can decrypt all stored messages intended for that user, as well as impersonate
said user.13

Plausible deniability can, in some scenarios, help against this. This action, called ”nuking an
address”, is done by anonymously publishing the private keys somewhere publicly accessible.14

Perfect forward secrecy seems impractical to implement, as it requires to exchange messages prior
to sending encrypted content. That would in turn need proof of work to protect the network,
resulting in twice the work for the sender and three times longer to send — that is, if both clients
are online. Exchanging messages would be all but impossible if both users are online sporadically.

12Choosing a prefix value of 64 would most certainly mean that it’s alone on this stream.
13The latter might be more difficult if they got the key through a brute force attack.
14See https://bitmessage.ch/nuked/ for an example.

May 25, 2015 12/13

https://bitmessage.ch/nuked/

Informatikseminar

4. Discussion

Anonymity has its price. With Bitmessage it’s traffic and disk space, with E-Mail it’s trust. If we
can’t trust our e-mail providers (who can?), Bitmessage is a very interesting alternative, albeit not
fully matured.

I find the idea of trustless protocols, and peer to peer networks that typically leverage them,
intriguing. In the beginning, the internet was a huge network of equal participants, but nowadays
it all seems to end up at google or facebook. P2P and trustless protocols give us back some of
that freedom that got lost in the cloud.

That there is now a p2p e-mail replacement I think is absolutely amazing.

TODO

.

.

.

.

.

.

References

[1] Jonathan Coe. Bitmessage wiki: Scalability through prefix filtering, 2015. https://bitmessage.
org/wiki/Scalability through Prefix Filtering.

[2] Jonathan ’Atheros’ Warren and Jonathan Coe. Bitmessage wiki: Protocol specification, 2015.
https://bitmessage.org/wiki/Protocol specification.

[3] Jonathan ’Atheros’ Warren and ISibbol. Biginv and ping/pong, 2015. https://github.com/
Bitmessage/PyBitmessage/issues/112.

Appendix

A. TODO

May 25, 2015 13/13

https://bitmessage.org/wiki/Scalability_through_Prefix_Filtering
https://bitmessage.org/wiki/Scalability_through_Prefix_Filtering
https://bitmessage.org/wiki/Protocol_specification
https://github.com/Bitmessage/PyBitmessage/issues/112
https://github.com/Bitmessage/PyBitmessage/issues/112

	Introduction
	What is Metadata?
	How Can We Hide Metadata?

	Protocol
	Nomenclature
	message, msg
	payload
	object

	Process Flow
	Messages
	version / verack
	addr
	inv
	getdata
	object
	ping / pong / getbiginv

	Addresses
	Encryption
	Signature

	Issues
	Scalability
	Proof of Work
	Message Size Limitation
	Streams
	Prefix Filtering

	Forward Secrecy

	Discussion
	Appendix
	TODO

